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Abstract. It is shown using Vlasov dynamics that the density distribution corresponding to a mean field
Bose condensate in an external time dependent potential is adiabatically stable whereas density distribu-
tions corresponding to finite temperature are not.
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1 Introduction

Recently the interest in Bose-Einstein condensation has
considerably increased, due to the fact that experimentally
effects corresponding to the condensation phenomenon
could be observed [1–3]. Theoretically the existence of
Bose-Einstein condensation can be shown for free parti-
cles and on the basis of a mean field theory. E.g. in [4] a
system corresponding to the experiment was considered.
In [5] Michoel et al. treated a variation of a mean field
theory, in [6] Kerson Huang considered the effect of an
outside harmonic trap for a large but finite N , whereas in
[7] the limit N →∞ was taken for temperature states in
a scaling that mimics the scaling of large atoms. In this
scaling the bosons have a large velocity that allows to con-
sider them localized sharply in relation to the size of the
trap potential. But if the potential is sufficiently deep an
increasing part of the bosons will have negligible veloc-
ity and can be put into a ground state wave function of
finite extension, whose kinetic energy due to the scaling
becomes negligible.

The limit states obtained in this way, both ground
states and temperature states, are of course time-
invariant. But one can consider sequences of states with
a similar scaling behaviour. This was done in [8]. Such
states will not be time-invariant but with the appropri-
ate choice of time scale the time evolution of these states
obey the classical Vlasov dynamics where the density in
phase space is the limit of Wigner distributions which in
the chosen scaling become a positive measure on phase
space.

Motivated by these results [7,8] we study in this paper
the behaviour of the solutions of the Vlasov dynamics if
we assume that the confining potential varies slowly in
time. We should remember that Vlasov dynamics as a
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mean field theory preserves all Lp norms of the density
distribution and therefore cannot explain entropy increase
and hence convergence to equilibrium. If, on the other
hand, we start with an equilibrium state, we can still hope
that the system evolves in such a way that it remains
close to equilibrium if we change the confining potential
V (0) to V (T ) but adiabatically slowly, i.e. at the time t
V (t) is given by V (Tε) and the time interval runs from
0 ≤ t < T/ε and we consider the limit ε → 0. Then ρ(t)
remains an equilibrium state up to order ε for 0 < t < T/ε.

This turns out not to be true. We will obtain the
following result: we consider only trap potentials that
are harmonic. If we shift this trap potential adiabati-
cally in space, then temperature states evolve to temper-
ature states with fixed temperature and chemical poten-
tial (Sect. 3). If, on the other hand, we vary adiabatically
the strength of the trap potential, then we are only able
to show that adiabatically the Bose-Einstein condensate
will remain a Bose-Einstein condensate (with some tech-
nical assumptions on the interaction potential). But (Sect.
4) for temperature states the invariance of the Lp norms
leads to contradiction to the assumption that for adiabatic
variation of the confining potential temperature states re-
main temperature states. The argument does not apply
to the ground state since the density is a δ distribution
in momentum space for which all Lp norms, p > 1, are
infinite.

Confining potentials are global perturbations and we
make no statement for local perturbations. The obtained
result is in agreement to the observation that superfluids
(that may be considered as Bose-Einstein condensates) re-
act more promptly to changes of the environment, there-
fore global perturbations, e.g. can run through capillars.

2 The model

Motivated by the scaling behaviour of large atoms we con-
sider the limit N → ∞ of a system of N particles with
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corresponding Hamiltonian

HN = N−2γ
N∑
i

p2
i +

N∑
i

V (xi) +
1

2N

N∑
i6=j

W (xi − xj).

(2.1)

with γ = 1/ν, ν the dimension. Such a Hamiltonian arises
naturally after the appropriate scaling for an atom with
nuclear charge Z and N electrons

V (xi) =
1

|xi|
, W (xi − xj) =

1

|xi − xj |

[9,10]. In [7] the corresponding system was considered for
repulsive bosons with a trap potential V = λx2, as it
would result from a homogeneous fermionic charge dis-
tribution. There it was shown that for sufficiently low
temperatures Bose-Einstein condensation occurs. Similar
bosonic systems with mean field Hamiltonian giving rise
to Bose-Einstein condensation were considered in [6,11].
In addition to the evaluation of the energy it is also possi-
ble to make statements on the equilibrium state. With ωN
the equilibrium state for N particles and temperature β

lim
N→∞

ωN(eiαN
−γpi+iδxi) = µ(α, δ) (2.2)

exists and µ(α, δ) is the characteristic function of a density
distribution ρ(x, p) that satisfies
for fermions:

ρ(x, p) =

1

1 + exp
[
−β(p2 + V (x) +

∫
W (x− y)ρ(y, q)dydq)− µ

] ,
for bosons provided ρ(x, p) ≥ 0:

ρ(x, p) =

1

exp
[
β(p2 + V (x) +

∫
W (x− y)ρ(y, q)dydq)− µ

]
− 1

,

for classical systems with Boltzmann statistics:

ρ(x, p) =

exp[−βp2] exp

[
−β(V (x) +

∫
W (x− y)ρ(y, q)dydq)− µ

]
.

(2.3)

For sufficently low temperatures it is necessary for bosons
to put some particles into the condensate to satisfy
ρ(x, p) ≥ 0, i.e. a positive measure. Especially the ground-
state corresponds to a density distribution which has the
form

ρG(x, p) = ρG(x) δ(p), (2.4)

where ρG(x) is determined by the condition

V (x) +

∫
W (x− y) ρG(y) = const ∀ x

with supp ρG(x) 6= 0.

In general [7]

ρ(x, p) = ρV0(x, p) + λ(x)δν(p)

with

V0(x) =

∫
ρ(x′, p)W (x− x′)dx′dp

ρV0(x, p) = [exp(β(p2 + V (x) + V0(x)) − 1]−1

λ(x) ≥ 0, supp λ = {x : x2 − µ+ V0(x) = 0}.

For β =∞ λ(x) reduces to ρG(x) in (2.4).
We can consider sequences of states that scale in the

same way (Eq. (2.2)) as the mean field models. The result-
ing states will in general be time dependent. The natural
time scale is determined as the time scale in which par-
ticles with average momentum move for a finite distance,
i.e. we consider

lim
N→∞

ωN

(
e−iHN tN

γ

eiαN
−γpi+iδxi eiHN tN

γ
)

= µ(α, δ, t).

(2.5)

Provided the initial state satisfies that the expectation
values of x2

j and p2
j are uniformly bounded independently

of the particle number N , i.e.

〈x2
j 〉N ≤ A, N−2γ〈p2

j〉N ≤ B

and V and W are sufficiently regular it was proven in [8]
that (2.5) exists and is the characteristic function of a
density distribution that evolves according to the Vlasov
equation, i.e. the mean field dynamics. It is given by

dρt(x, p)

dt
=
∂ρ(x, p)

∂x
p

−
∂ρ(x, p)

∂p

{
∇V (x) +

∫
∇W (x− y)ρt(y, q)dydq

}
.

The most suitable way to express this mean field dynamics
reads:
ρt(x, p) is given by the system

dx

dt
= p

dp

dt
= −∇V (x) −

∫
∇W (x− y)ρt(y, q)dydq (2.6)

ρt(x, p) =

∫
δ(x− x(y, q, t))δ(p− p(y, q, t))ρ0(y, q)dydq

where x(y, q, t), p(y, q, t) are the solutions with initial con-
dition x(y, q, 0) = y, p(y, q, 0) = ẋ(y, q, t = 0) = q.

This setting enables us to investigate whether
the Bose-Einstein condensate (Eq. (2.4)) reacts more
promptly than the rest to a change of the environment as
we expect from a superfluid. We mimic this change of the
environment by considering time dependent external po-
tentials and check whether in the course of time the Bose-
Einstein condensate remains a Bose-Einstein condensate.
This is not possible for a sudden change of the poten-
tial. The initial state will not be a groundstate for the
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new potential and since the Vlasov dynamics preserves
energy it cannot develop into a groundstate nor into a
temperature state. Since the δ-type singularity in the mo-
mentum distribution of the ground state is preserved by
(2.6) it cannot separate into a condensate and a smooth
equilibrium distribution. If, on the other hand, we vary
the external potential slowly then we can hope that in the
adiabatic limit the Bose-Einstein condensate will remain
a Bose-Einstein condensate.

We know that the adiabatic theorem holds in quantum
mechanics [12], i.e. a groundstate remains a groundstate
if |〈dV/dt〉| � E1 − E0, the energy distance between the
groundstate and the first excited state. For our Hamil-
tonian the groundstate of (2.1) is extended over a finite
region, due to the repulsive interaction between the par-
ticles, therefore the kinetic energy per particle is of the
order N−2γ , in the first excited state one particle is ex-
cited in an area confined by supp ρG(x), but otherwise
in a constant potential, therefore E1 − E0 is also of the
order N−2γ , which means that HN can only be allowed to
change significantly over a time period of order N2γ .

On the other hand, we can consider the Vlasov dy-
namics and compare the variation with the external po-
tential with the time scale of the Vlasov dynamics N−γ

(Eq. (2.5)). Thus slow with respect to Vlasov dynamics
is fast in the sense of the previous scaling N−2γ . There-
fore we have to look for an adiabatic theorem on the basis
of Vlasov dynamics. Since this is a classical evolution, we
have to use the classical result [13]: If we stay in one di-
mension and the Hamiltonian Ht admits for all t action
and angle variables then adiabatically the action variables
remain constant.

A proof for an adiabatic theorem in general uses the
fact that one can guess the appropriate time evolution and
shows by perturbative arguments that the guess was cor-
rect. We will follow this method for the condensate. For
temperature states the failure of this method does not im-
ply instability of the equilibrium state, but we will be able
to find contradictions to the assumption that the state re-
mains a temperature state. Of course, Vlasov dynamics
can only describe mean field effects and is therefore inad-
equate to treat typical quantum effects as interference.

3 Space translation of the potential

As a starting exercise we consider a shift of the external
potential. We will observe that a shift of a harmonic exter-
nal potential is sufficiently smooth so that no qualitatively
different behaviour between Bose-Einstein condensate and
temperature states can be observed.

Our Hamiltonian reads

HN (t) = N−2γ
N∑
i

p2
i

+
N∑
i

λ(xi − z(εN t))
2 +

1

2N

N∑
i6=j

W (xi − xj).

(3.1)

For the harmonic potential the Hamiltonian can be sepa-
rated into center of mass coordinates and relative coordi-
nates:

HN (t) = N−2γP 2 + λ(X −
√
N z(εN t))

2

+N−2γ
N−1∑
r=1

p2
r +

1

2N
W̃ (xr1 , . . . , xrN−1) (3.2)

with P =
1
√
N

∑
pi, X =

1
√
N

∑
xi.

The shift of the potential only effects the center of
mass coordinates, the state corresponding to the rela-
tive coordinates will remain unchanged. For the center of
mass the difference of the eigenvalues is

√
λ N−γ , whereas

〈V̇ 〉 =
√
N ż〈x〉, therefore εN has to be small compared to

N−(γ+1)/2. But this estimate is not optimal and can be im-
proved by Vlasov dynamics. In fact, for the harmonic oscil-
lator classical and quantum mechanical solutions coincide
and the classical equation can be solved explicitly. We are
interested in the variation of the macroscopic observable
x̄ = lim 1

N

∑
xi and in its time derivative with respect to

the scaled time evolution, i.e. p̄ = limN−γ 1
N

∑
pi. If we

introduce in the Vlasov equation the variables x = x̄+x0,
p = p̄ + p0, then we get with εN = εN−γ (which coin-
cides with the result of quantum mechanics only in one
dimension, γ = 1)

d2x

dt2
=
d2x̄

dt2
+
d2x0

dt2

= −2λ(x̄− z(εt))

− 2λx0 −

∫
∇W (x0 − y0)ρ0(y0, q0)dy0dq0. (3.3)

By assumption on ρ0(y0, q0)

d2x0

dt2
= −2λx0 −

∫
∇W (x0 − y0)ρ0(y0, q0)dy0dq0,

i.e. x0(y0, q0, t) is a solution corresponding to the time
independent external harmonic potential. There remains

d2x̄

dt2
= −2λ(x̄− z(εt)).

Therefore x̄ is a solution for the shifted harmonic potential
with x̄(0) = p̄(0) = 0. x̄ − z(εt) is of order ε if z(εt) is
twice differentiable for t < T/ε now independent of the
dimension ν = 1/γ [13]. If especially ρ0 is a temperature
distribution ρβ(x, p) of the various types (Eq. (2.3)) then
ρt(x, p) = ρ0(x̄+x0, p̄+p0) remains close to a temperature
distribution in the distributional sense, i.e.∣∣∣∣∫ ρ(x, p)f(x, p)dxdp −

∫
ρβ(x− εt, p)f(x, p)dxdp

∣∣∣∣ < εcf

for all t with 0 < t < T/ε. Here f is a C∞ function and
cf depends on f . It should be noted that the adiabatic
theorem of quantum dynamics and the classical adiabatic
theorem do not demand the same scaling of ε, because
they do not ask the same question: even if the center of
mass does not stay in the groundstate, the expectation
value of x stays small as long as only the lower eigenstates
contribute. But without a gap between the eigenvalues this
cannot be controlled by the general theorem of quantum
mechanics.
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4 Variation of the strength

Now we consider the evolution of the ground state corre-
sponding to

HN = N−2γ
N∑
i

p2
i + λ(εN t)

N∑
i

x2
i +

1

2N

N∑
i6=j

W (xi − xj).

(4.1)

Turning to center of mass coordinates and relative coor-
dinates does not remove the time dependence for the rel-
ative coordinates anymore and therefore does not help in
the sense that the Vlasov equation splits into an invariant
part of the relative motion and a time dependent part of
the center of mass motion. Instead we have to find a re-
placement for z(εt) in (3.3) as the movement x0(t, y) of
the individual particles that is necessary to transform the
initial ground state into the ground state corresponding
to the changed confining potential. The velocity of this
movement will be of order ε, determined by the veloc-
ity how quickly the strength of the confining potential is
changed. The remaining task will be to show that the real
movement of the particles will be a negligible oscillation
around this movement x0.

In order to find x0 we first analyze the ground state
as defined in (2.4) that for potentials that are radially
symmetric satisfies∫
∇W (x− y)ρGt(y)dy = ∇V = 2λ(εt)x, |x| ≤ at

ρGt(x) = 0, |x| > at (4.2)

with the normalization condition∫
|x|≤at

ρt(x)dx = 1.

We expect that the adiabatic evolution of a particle will
oscillate around a path x0(t, y) determined by

ρGt(x) =

∫
δ(x− x0(t, y))ρG0(y)dy. (4.3)

Since we assumed a radial symmetric potential the result-
ing x0(t, y) will point to or from the center. We can obtain

x0(t, y) by solving the equation for p(x) ≡
d

dt
x0(t, x)

∣∣∣∣
t=0

and with f(x) a smearing function∫
dxf(x)

∂ρGt(x)

∂t

= −

∫ ∫
dxf(x)∇δ(x− x0(t, y))

dx0(t, y)

dt
ρG0(y)dy

=

∫ ∫
∇f(x)dxδ(x − x0(t, y))

dx0(t, y)

dt
ρG0(y)dy

= −

∫
f(x)dx

(
dp

dx
ρGt(x) + p

∂ρGt(x)

∂x

)
. (4.4)

This leads to the differential equation for pt(x)

∂ρGt(x)

∂t
= −

dpt

dx
ρGt(x)− pt

∂ρGt(x)

∂x

from which we can determine pt(x). For example we can
consider in one dimension the potential W (x−y) = |x−y|.
Then the corresponding groundstate is given by

ρt(x) =
1

at
, |x| ≤ at

2λtx = −

∫ at

x

1

at
dy +

∫ x

−at

1

at
dy =

2x

at
·

Therefore

x0(t, x) =
at

a0
x =

λ0

λt
x · (4.5)

Similarly the Coulombic interaction in three dimensions
W (x− y) = 1/(|x− y|) again leads to a constant density
distribution ρt(x) = ctΘ(at − |x|) [7]. (Remark: in [8] the
validity of the Vlasov equation in the appropriate limit
was only proven for non-singular potentials. On the other
hand, the singularity is smoothened by the radial symmet-
ric density distribution. Since the density remains radial
symmetric and smooth, also for the Coulomb interaction
the Vlasov equation describes correctly the behaviour.)

Now
1

r

4π

3
r3ct = λtr

2

together with

ct
4π

3
a3
t = λta

3
t = 1

so that again

x0(t, x) =
at

a0
x. (4.6)

We have to notice that the ansatz (Eq. (4.3)) cannot be
generalized to temperature states. First we do not know
what ρt(x, p) we have to choose, since we have to expect
that temperature and chemical potential might change in
time. In addition, for the groundstate we expect x0(t, x)
to give approximately the correct answer. The particles
have velocity of order ε, therefore the density in phase
space ρt(x)δ(p − dx0/dt) gives an expectation of the en-
ergy close to the groundstate energy up to order ε2. For
a temperature state particles will move even if the exter-
nal potential is constant in time. This could be taken into
account in (3.3) but a corresponding guess in the present
case does not seem available.

We return to solve the Vlasov equation for the ground-
state by the iteration ansatz and have to control that the
deviation from x0 defined via (4.4) remains an oscillation
of O(ε)

dxn(t, x)

dt
= pn(t, x)

dpn(t, x)

dt
= −2λ(εt)xn(t, x)−

∫
∇W (xn−1(t, x)

− yn−1(t, y))ρ0(y)dy (4.7)
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starting with x0(t, x) given by (4.3). For x0 we have
ẋ0(0, x) 6= 0, but for n > 0 we demand ẋn(0) = 0, since we
start with the particle at rest. Lipschitz continuity guar-
antees that limn→∞ xn(t, x) = x(t, x) exists. Therefore we
have only to control whether |xn(t, x) − x0(t, x)| < cε,
|dxn(t, x)/dt| < cε for some c > 0 and t ≤ T/ε uniformly
in n. With x̄n(t, x) = xn(t, x)−x0(t, x) we get up to O(ε2)

d2x̄1(t, x)

dt2
= −

d2x0(t, x)

dt2
− 2λ(εt)x̄1 − 2λ(εt)x0(t, x)

−

∫
∇W (x0(t, x)− x0(t, y))ρ0(y)dy

= −
d2x0(t, x)

dt2
− 2λ(εt)x̄1 (4.8)

with initial conditions x̄1(0) = 0 and dx̄1/dt = dx0/dt =
O(ε). Since we assume that λ(εt) ≥ λ0 > 0 the solution
of the homogeneous part of the differential equation with
the above initial conditions is of the order ε. The solution
of the inhomogeneous equation with trivial initial condi-
tions is of order ε2, if we assume λ(t) to be three times
differentiable. If we continue to estimate x̄n we have to
control∫
∇W (x̄n−1(t, x)−x̄n−1(t, y)+x0(t, x)−x0(t, y))ρ0(y)dy.

(4.9)

This will give a contribution of order ε and for controlling
the differential equation we have to specify this contri-
bution. x̄n−1(t, y) is oscillating in t and varying in y. If
as a first guess we assume that by integration over y the
contribution will average out, we remain with

d2x̄n

dt2
= −2λ(εt)x̄n + 2λ(εt)x̄n−1 +O(ε2)

and in the limit n→∞ the oscillation cannot control the
term of order ε2 for t < T/ε. Therefore it is necessary that
(4.9) acts regulating and can be estimated by

−2λ(εt)x̄n(t, x) + 2λ(εt)γ(t)x̄n−1(t, x)

where γ(t) < γ0 < 1, which means that xn(t, x) more or
less oscillates in phase depending on x. Unfortunately we
have not been able to show that this is really the case for
all kind of particle interactions. We have only succeeded
to control it for special interactions where we could use
scaling arguments, though we believe that the result is
more generally true.

Theorem
Let ρt(x) be the groundstate density corresponding to
an external potential V = λ(εt)x2 and an interaction
W (x− y) = v|x− y|µ where v < 0 for 0 < µ < 2 or v > 0
for −ν < µ < 0. Then ∀ T and all ε > 0 ∃ c such that

|ρ(x, t)− ρt(x)| < cε, t ≤ T/ε (4.10)

where ρ(x, q, t) = ρ(x, t)δ
(
q − ẋ(x, t)

)
solves the Vlasov

equation and ẋ remains of order ε and ρ(x, 0) = ρ0(x).

Proof
The normalization condition∫

ρt(x)dx = ρ0

does not allow to make a scaling ansatz ρt(x) =
αtx

γΘ(ct − x). But the scaling behaviour for the inter-
action allows the ansatz x0(t, x) = g0(t)x: we know that

v

∫
∇|x− y|µρt(y)dνy = 2λ(t)x.

With (4.3) and the above ansatz we get

v

∫
∇|x− y|µρ

(
y

g0(t)

)
g−ν0 (t)dνy

= vg0(t)µ−1

∫
∇|xg−1

0 − y|µ−1ρ0(y)dνy

= g0(t)µ−12λ0x · g
−1
0 = 2λ(t)x

and therefore with g0(0) = 1 we get

g0(t)µ−2 =
λ(t)

λ(0)
· (4.11)

Induction allows to make the ansatz for (4.8)

x̄n(t, x) = ḡn(t)x

which leads to

g̈0 + ¨̄gn = −2λ(t)(g0 + ḡn) + (g0 + ḡn)µ−1 1

x

×

∫
∇W (x− y)ρ0(y)dy +O(ε2).

ρ0 is of finite size, whereas we expect ḡn to be O(ε) so
that we can expand

(g0 + ḡn)µ−1 = gµ−1
0

(
1 + (µ− 1)

ḡn

g0

)
+O(ε2)

whereas
∫
∇W (x − y)ρo(y)dy = 2λ0x. Together with

(4.11) this gives

g̈0 + ¨̄gn = −2λ(t)(g0 + ḡn) + (g0 + ḡn)µ−12λ(t) +O(ε2)

= −2λ(t)(2− µ)ḡn +O(ε2).

With ˙̄gn(0) = O(ε) we get ḡn = O(ε) which proves (4.10).

5 Consequences for the temperature state

A path of the individual particle around which the real
evolution will oscillate in the adiabatic limit is not avail-
able when we start with a density distribution correspond-
ing to temperature. But this is not sufficient to conclude
that for high temperature there does not exist an analogue
of the adiabatic theorem.
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But Vlasov dynamics is sufficiently informative to
argue that indeed it does not hold: since ρ(x, p, t) =
ρ(x(t), p(t)) it preserves all Lp norms in the course of
time 0 ≤ p ≤ ∞. This is so since (x, p)→ (x(t), p(t)) is a
one parameter family (not group) of canonical transforma-
tions. Even if we take into account that temperature and
chemical potential can be time dependent these two free
parameters do not suffice to preserve the Lp norms. We
will demonstrate this explicitly for Boltzmann statistics.
Since for high temperatures Boltzmann statistics, Fermi
statistics and Bose statistics approach one another, we
have found a contradiction. First let us consider W ≡ 0.
Then

dx

dt
= p,

dp

dt
= −λ(εt)x(t)

can be controlled by the results of [13] (p. 297). Then∣∣∣∣x2(t) + p2(t)

λ(εt)
−
x2(0) + p2(0)

λ(0)

∣∣∣∣ < cε for t ≤ T/ε.

A state invariant under the initial time evolution is of the
form

ρ(x, p) = f(p2 + λ(0)x2)

and will develop up to order ε to

f

(
(p2 + λ(εt)x2)

√
λ(0)

λ(εt)

)
. (5.1)

If the initial state is a temperature state corresponding to
β(0) then the final state will be a temperature state with

β(t) = β(0)
√
λ(0)/λ(εt) irrespective of the statistics (Eq.

(2.3)).
Assume now W 6= 0 and that we start with a tem-

perature state obeying Boltzmann statistics. Assume that
this state evolves to a temperature with β(t). Then, in
dimension ν = 1/γ

ρ(x, p, βt) = e−βtp
2

ρ(x, βt)

= exp[−βtp
2] exp

[
− βt(λ(εt)x2

+

∫
W (x− y)ρ(y, βt)β

−γ/2
t dy

]
. (5.2)

Since ρt(x, p) results from a flow in phase space∫
ρt(x, p)

qdxdp =

∫
ρ0(x, p)qdxdp ∀ q

ρt(x, p) can only be close to ρ(x, p, βt) for some βt if for
all q ∫

ρ(x, βt)
qdx∫

ρ(x, β0)qdx
=

∫
e−β0qp

2

dp∫
e−βtqp2dx

=

√
βt

β0

which implies ρ (x, βt) = ρ
(√

β0/βt x, β0

)
. Due to the

structure of ρ(x, βt) both terms in exp of (5.2) must have
the same x-dependence or∫

W (x− y)e−γy
2

dy = α x2

which cannot be satisfied for any interaction 6= 0.
We should finally remark that superfluidity is gener-

ally interpreted as a typical quantum effect. Here we have
argued on the basis of pure classical dynamics. Quantum
mechanics only occurs in the justification of the ground
state distribution which turned out to be adiabatically
invariant: in the above scaling it is the groundstate distri-
bution for quantum bosons as well as for classical Boltz-
mann particles. But for quantum bosons it corresponds
to a phase transition of second kind [7], therefore remains
for sufficiently low temperatures, whereas for Boltzmann
particles the δ-type singularity of the momentum imme-
diately disappears for finite temperature.

6 Summary
We considered the behaviour of Vlasov dynamics under
adiabatic variations of the confining potential. For arbi-
trary density distributions no general results are available
except if the confining potential is only shifted in space
and therefore only the center of mass motion is effected
(Sect. 3). In general we found a counterargument that
tells us that equilibrium distributions do not remain equi-
librium distributions no matter how slowly the confining
potential is changed (Sect. 5). But for the ground state
distribution, i.e. the distribution with minimal energy (for
bosons and Boltzmann statistics) the system remains in
the ground state for slow variations.

It is a pleasure to thank B. Baumgartner, W. Thirring and J.
Yngvason for critical and stimulating discussions. I remember
gratefully the guidance of Franz Schwabl during the relaxed
and at the same time challenging atmosphere of exercises while
I was studying.
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